Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования (ВолгГТУ)

Кафедра ЭВМиС

Лукьянов В. С., Жариков Д. Н., Гаевой С. В., Королев А. Д., Шафран Ю. В.

Имитационная модель грид-системы (GridModel). Руководство пользователя

Волгоград, 2011 г.

Стр. 2 из 53

Оглавление

1 Описание программы	4
1.1 Назначение программы	4
1.2 Системные требования программы	6
2 Редактирование GRID	6
2.1 Добавление кластера	6
2.2 Добавление линии связи	7
2.3 Изменение параметров кластера	9
2.4 Изменение параметров линии связи	12
2.5 Изменение параметров распределения	14
2.6 Удаление элементов	15
2.7 Сохранение файла	
2.8 Загрузка файла	
2.9 Режим редактирования	
2.10 Смещение области видимости	21
2.11 Масштабирование схемы GRID	24
2.12 Закрытие программы	26
3 Процесс моделирования	27
3.1 Списки задач для кластеров	
3.2 Задание моделируемых стратегий	

Стр. 3 из 53

3.3 Моделирование	
3.4 Статистика моделирования	
3.4.1 Окно статистики	
3.4.2 Статистика кластера	
3.4.3 Статистика появления задач	40
3.4.4 GRID таблица	41
3.4.5 Диаграммы статистики GRID	42
3.4.6 Линии связи	45
3.4.7 Анализ результатов	45
3.4.8 Сохранение статистики	47
3.5 Просмотр истории моделирования	48
4 Справка	
4.1 Помощь	
4.2 О программе	53

1 Описание программы

1.1 Назначение программы

Программа «GRID Model» предназначена для моделирования различных стратегий распределения заданий в GRID с учётом вероятностного появления заданий и поломки узлов кластеров и линий связи. Программа предоставляет следующие возможности:

А) Построение графа GRID произвольной топологии с количеством кластеров, не превосходящим 100, и возможностью задания по одной линии связи между каждыми двумя кластерами.

Б) Задание различных параметров кластеров и линий связи. Все кластеры подразумеваются гомогенными.

Для кластеров:

- название кластера;

- количество узлов кластера;
- количество ядер в узле кластера;
- объём оперативной памяти узла кластера;
- частота ЦПУ узла кластера;
- время простоя кластера;
- вероятность необнаруженного отказа;
- количество резервных узлов;
- количество одновременно ремонтируемых узлов;
- закон времени безотказной работы узлов;
- закон времени подключения резерва;
- закон времени появления задач;
- закон необходимого задачам количества узлов;
- закон необходимого приоритета задач;
- закон необходимого задаче объёма памяти;

Стр. 5 из 53

- закон необходимого результатам решения задачи объёма памяти;

- закон сложности задачи;

- закон времени обнаружения отказа;

- закон времени восстановления узла;

- файл со списком задач.

Для линий связи:

- пропускная способность линии связи в Гб/с;

- допустимое время простоя линии связи;

- кратность резервирования линии связи;

- закон безотказной работы линий связи.

В) Генерация списков задач для кластеров по введённым законам.

Г) Настройка моделируемых стратегий распределения задач по кластерам с возможностью многокритериального выбора внутри стратегии.

Д) Одновременное моделирование работы GRID для каждой из заданных стратегий распределения задач по кластерам с одними и теми же наборами задач для каждой стратегии.

E) Просмотр статистики моделирования для каждого кластера и для GRID по смоделированным стратегиям в текстовом виде. Просмотр статистики для GRID по смоделированным стратегиям в виде диаграмм.

Ж) Просмотр истории моделирования с выводом на схему GRID загрузки узлов и линий связи.

3) Сохранение и чтение из файла схем GRID, наборов стратегий для моделирования и списков задач кластеров.

И) Сохранение статистики в текстовый файл.

Й) Печать схемы GRID, характеристик кластеров и линий связи, а также статистики моделирования в текстовом и графическом видах.

1.2 Системные требования программы

Рекомендуемое аппаратное обеспечение:

А) Процессор с тактовой частотой не ниже 1,5 ГГц;

Б) Оперативная память объёмом не ниже 1 ГБ;

В) Видеокарта с объёмом видеопамяти не менее 256 МБ и поддержкой
 DirectX 9.0;

Г) Жёсткий диск;

Д) Совместимый цветной монитор;

Е) Совместимый манипулятор типа «Мышь»;

Ж) Совместимая клавиатура;

Рекомендуемое программное обеспечение:

А) Операционная система Microsoft Windows XP Service Pack 2 и выше;

Б) Программная платформа Microsoft .NET Framework 3.5;

В) Новейшие драйверы всех аппаратных устройств;

2 Редактирование GRID

2.1 Добавление кластера

Максимально возможное количество кластеров — 100.

Чтобы добавить кластер, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Добавить вершину» в меню «Правка» (см. рис. 2.1.1).

Рис. 2.1.1. Пункт меню «Добавить вершину»

Стр. 7 из 53

Б) Нажать кнопку «Добавить вершину» на панели инструментов (см. рис. 2.1.2).

	P		X			GRID	default	
_					<u> </u>			
Ą	оба	вить	верь	шину	l			

Рис. 2.1.2. Кнопка панели инструментов «Добавить вершину»

В) Использовать комбинацию клавиш Ctrl+Q

После использования одного из представленных способов добавленный кластер будет двигаться за курсором. Чтобы установить его, необходимо щёлкнуть левой кнопкой мыши.

2.2 Добавление линии связи

Два кластера может соединять только одна линия связи.

Чтобы добавить линию связи, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Добавить дугу» в меню «Правка» (см. рис. 2.2.1).

Рис. 2.2.1. Пункт меню «Добавить дугу»

Б) Нажать кнопку «Добавить дугу» на панели инструментов (см. рис. 2.2.2).

Стр. 8 из 53

Список задач	Моделирование
💽 🔳 📉 🛙	GRID default
Добавить дуг	y I

Рис. 2.2.2. Кнопка панели инструментов «Добавить дугу»

В) Использовать комбинацию клавиш Ctrl+A

После использования одного из представленных способов необходимо щёлкнуть последовательно на двух кластерах, которые необходимо соединить линией связи. После выбора первого кластера он подсвечивается жёлтым цветом (см.рис. 2.2.3).

Рис. 2.2.3. Выделенный при добавлении кластер

После выбора второго кластера добавляется линия связи (см. рис. 2.2.4).

Рис. 2.2.4. Созданная линия связи

Перед выбором первого и второго кластеров для построения линии связи её добавление можно отменить, выбрав «Режим редактирования» (см. Режим редактирования).

2.3 Изменение параметров кластера

Чтобы получить возможность изменять параметры кластера необходимо выделить его щелчком мыши. Выделенный кластер подсвечивается зелёным цветом (см. рис. 2.3.1).

Рис. 2.3.1. Выделенный кластер

Изменить расположение кластера можно, передвигая его с помощью мыши. Для этого необходимо нажать левую кнопку мыши на изображении кластера. Затем необходимо, удерживая левую кнопку нажатой, передвигать мышь до достижения нужного расположения (см. рис. 2.3.2 и 2.3.3). После этого левую кнопку мыши надо отпустить. При перемещении кластера все соединённые с ним линии связи будут менять свою форму, вытягиваясь за ним.

Рис. 2.3.2. До перемещения кластера

Стр. 10 из 53

Рис. 2.3.3. После перемещения кластера

Изменить параметры кластера можно с помощью группы элементов «Настройка кластера» (см. рис. 2.3.4).

- Настройка	кластера	
Название	Cluster	
	Узлов	Ядер в узле
Количество	128 🌲	4 🚔
2,330 🚖	GHz 4,000	Flops/Hz
Резерв 8	🚔 Ремонт	1
Время прос	тоя, ч	0,00 🌲
Вер. необна	руж. отказа	0,00 🚖
Настраивае	мый закон	
Время без	отказной работы	
Файл зада	4	

Рис. 2.3.4. Группа элементов «Настройка кластера»

Задаваемые параметры кластера:

А) название кластера;

- Б) количество узлов кластера;
- В) количество ядер в узле кластера;

Стр. 11 из 53

Г) объём оперативной памяти узла кластера;

Д) частота ЦПУ узла кластера;

Е) время простоя кластера;

Ж) вероятность необнаруженного отказа;

3) количество резервных узлов;

И) количество одновременно ремонтируемых узлов;

К) закон времени безотказной работы узлов;

Л) закон времени подключения резерва;

М) закон времени появления задач;

Н) закон необходимого задачам количества узлов;

О) закон необходимого приоритета задач;

П) закон необходимого задаче объёма памяти;

Р) закон необходимого результатам решения задачи объёма памяти;

С) закон сложности задачи;

Т) закон времени обнаружения отказа;

У) закон времени восстановления узла;

Ф) файл со списком задач.

Чтобы задать имя файла со списком задач, необходимо щёлкнуть на кнопку «…», расположенную рядом с полем для имени файла (см. рис. 2.3.5), и выбрать необходимый файл с помощью выведенного программой диалога (см. рис. 2.3.6).

Файл задач	

Рис. 2.3.5. Поле задания файла со списком задач для кластера

🖳 Открыть x 🌜 🍦 👻 📜 « (С:) Локальный диск 🕨 Task Files Q - R Поиск: Task Files Упорядочить 🔻 Новая папка 0 4321_2010-CMS ۸ Имя Дата изменения Тип ITA 📕 🅎 ВолгГТУ.txt 16.09.2011 11:44 Текст Boot Config.Msi 📕 Documents and Set MSOCache objectiF Systems PerfLogs Ξ 📕 Program Files Program Files (x86) ProgramData Recovery 👢 System Volume Infc Task Files TEMP ш VueScan € [Файлы заданий (*.txt) <u>И</u>мя файла: *.txt Открыть Отмена

Стр. 12 из 53

Рис. 2.3.6. Диалог выбора файла со списком задач для кластера

Действия по генерации, добавлению и удалению привязки кластера к файлу со списком задач можно выполнить с помощью меню «Список задач» (см. Списки задач для кластеров).

2.4 Изменение параметров линии связи

Чтобы получить возможность изменять параметры линии связи необходимо выделить её щелчком мыши. Выделенная линия связи подсвечивается зелёным цветом (см. рис. 2.4.1).

Стр. 13 из 53

Рис. 2.4.1. Выделенная линия связи

Изменить форму линии связи можно, передвигая точку притяжения кривой. Для этого необходимо нажать левую кнопку мыши на выведенной на экран пропускной способности. Затем необходимо, удерживая левую кнопку нажатой, передвигать мышь до достижения нужной формы линии связи (см. рис. 2.4.2). После этого левую кнопку мыши надо отпустить.

Рис. 2.4.2. Новая форма линии связи

Изменить параметры линии связи можно с помощью группы элементов «Настройка линии связи» (см. рис. 2.4.3).

Настройка линии связи Пропускная способность,	Гб/с	1,0	×.
Резервирование	1		*
Время простоя, ч	0,00		*
Настраиваемый закон			
Время без отказной рабо	ты		•

Рис. 2.4.3. Группа элементов «Настройка линии связи»

Стр. 14 из 53

Задаваемые параметры линии связи:

А) Пропускная способность линии связи в Гб/с;

Б) Протяжённость линии связи в километрах;

В) Закон безотказной работы линии связи;

Параметры А и Б задаются непосредственно с помощью группы элементов «Настройка линии связи». Параметры В и Г задаются с помощью группы элементов «Настройка закона» (см. Изменение параметров распределения).

2.5 Изменение параметров распределения

Изменить параметры распределения выбранного закона (см. Изменение параметров кластера и Изменение параметров линии связи) можно с помощью группы элементов «Настройка закона» (см. рис. 2.5.1).

Настройка закона			
Показательный			
Первый парамет	900,0000	*	
Второй параметр	0,00000	*	

Рис. 2.5.1. Группа элементов «Настройка закона»

Задаваемые параметры распределения:

А) Вид распределения;

Б) Первый параметр распределения;

Г) Второй параметр распределения;

Поддерживаемые программой виды распределения:

А) H(a,b) - нормальный с матожиданием (a) и СКО (b);

Б) P(a,b) – равномерный на отрезке [a;b];

В) П(а) – показательный с матожиданием (а);

 Γ) К(а) – константное значение (а);

Д) В(a, b) – Вейбула с $\lambda = a$ и $\alpha = b$;

E) Л(а) – линейный с $\lambda = a;$

Ж) Э(a, b) – поток Эрланга с матожиданием (a) и порядка (b).

Для показательного и постоянного распределений учитывается значение только первого параметра.

2.6 Удаление элементов

Чтобы удалить кластер или линию связи, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Удалить» в меню «Правка» (см. рис. 2.6.1).

	Правка	Список задач	Моделировани	e
	Добавить вершину		Ctrl+Q	
1	Доб	авить дугу	Ctrl+A	-
-	Реж	им редактирован	ия Ctrl+E	
	Удал	тить	Ctrl+Del	

Рис. 2.6.1. Пункт меню «Удалить»

Б) Нажать кнопку «Удалить» на панели инструментов (см. рис. 2.6.2).

Список задач			N	Лодели	рование
P		\ge		GRID	default
		Уда.	лить]	

Рис. 2.6.2. Кнопка панели инструментов «Удалить»

В) Использовать комбинацию клавиш Ctrl+Del

После использования одного из представленных способов необходимо щёлкнуть на кластере или линии связи, которую необходимо удалить. Кластер удаляется вместе со всеми линиями связи, которые с ним соединены.

Чтобы удалить все элементы GRID, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Новый» в меню «GRID» (см. рис. 2.6.3).

Стр. 16 из 53

GRID	Правка	Список задач	Модели	рование
H	овый		Ctrl+N	ault
0	ткрыть		Ctrl+0	
c	охранить		Ctrl+S	
c	охранить к	ак Ctrl	+Shift+S	
<u>п</u>	редварител	льный просмотр	Alt+P	
П п	ечать		Ctrl+P	
В	ыход		Alt+X	

Рис. 2.6.3. Пункт меню «Новый»

Б) Нажать кнопку «Новый файл» на панели инструментов (см. рис. 2.6.4).

Рис. 2.6.4. Кнопка панели инструментов «Новый файл»

В) Использовать комбинацию клавиш Ctrl+N.

2.7 Сохранение файла

Чтобы сохранить файл с описанием GRID, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Сохранить» или «Сохранить как ...» в меню «GRID» (см. рис. 2.7.1).

Стр. 17 из 53

GRID	Правка	Список задач	Моделир	ование
Н	овый		Ctrl+N	ault
0	ткрыть		Ctrl+0	
C	охранить		Ctrl+S	
С	охранить ка	ак Ctrl	+Shift+S	
п	редварител	ьный просмотр	Alt+P	
п	ечать		Ctrl+P	
B	ыход		Alt+X	
_				

Рис. 2.7.1. Сохранение из меню

Б) Нажать кнопку «Сохранить файл» на панели инструментов (см. рис.

22).

Рис. 2.7.2. Кнопка панели инструментов «Сохранить файл»

В) Использовать комбинацию клавиш Ctrl+S для сохранения или Ctrl+Shift+S для сохранения с новым именем. Команда «Сохранить как ...» приводит к сохранению файла с новым именем. Команда «Сохранить» записывает файл под текущим именем. Если текущее имя не задано, при выборе команды «Сохранить» автоматически сработает команда «Сохранить как ...». После выбора команды «Сохранить как ...» откроется диалоговое окно для ввода имени файла (см. рис. 2.7.3).

Стр. 18 из 53

	N Deve er un vie en en	Task Files — 🔿	Deven Teck Siles	0
	Локальный диск		TTOUCK: TUSK Filles	4
Упорядочить 🔻	Новая папка		8==	- 😥
🌉 Контакты	л Имя	A	Дата изменения	Тип
🐚 Мои видео	зап			
関 Мои докум	ент	Нет элементов, удовлетворяю	цих условиям поиска.	
関 Мои докум	ент			
🌒 Моя музык	ca			
👢 Поиски				
퉣 Сохраненн	ые			
🐻 Ссылки				
📕 Шаблоны				
🖳 Компьютер				
📇 (А:) Дисков	зод			
📇 (С:) Локаль	ны			
💼 (D:) Локаль	ны			
💼 (Е:) Локаль	ныі т 🔸	III		+
Имя файла:	*.gmn			•
	(the Xin CRID (* man)			-

Рис. 2.7.3. Диалоговое окно выбора имени сохраняемого файла

При сохранении файла возможны ошибки из-за недостаточного объёма свободного места на жёстком диске. Также ошибки могут возникать при попытке перезаписать файл с недостаточными для этого правами пользователя.

2.8 Загрузка файла

Чтобы загрузить файл с описанием GRID, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Открыть ...» в меню «GRID» (см. рис. 2.8.1).

Стр. 19 из 53

GRID	Правка	Список задач	Моделиров	ание
н	овый		Ctrl+N	ster.gmn
0	ткрыть		Ctrl+0	<u> </u>
C	охранить		Ctrl+S	
C	охранить к	ак Ctrl-	+Shift+S	
п	редварител	льный просмотр	Alt+P	
п	ечать		Ctrl+P	
B	ыход		Alt+X	

Рис. 2.8.1. Пункт меню «Открыть ...»

Б) Нажать кнопку «Открыть ...» на панели инструментов (см. рис. 2.8.2).

Рис. 2.8.2. Кнопка панели инструментов «Открыть ...»

В) Использовать комбинацию клавиш Ctrl+O.

После выбора команды «Открыть ...» откроется диалоговое окно для ввода имени или выбора файла (см. рис. 2.8.3).

Стр. 20 из 53

🖳 GRID Model - Открытие файла		×
🔶 – 📕 « (С:) Локальный диск 🕨 Task Files 🔹 👻	Поиск: Task Files	Q
Упорядочить 🔻 Новая папка	!≡ ▼ 🚺	0
🔶 Избранное 📩 Имя	Дата изменения	Тип
💽 Загрузки 🚆 Недавние места 🗮 🔤 Рабочий стол	19.09.2011 9:48	Файл
 Рабочий стол Библиотеки Домашняя группа poggi AppData Application Data Cookies Desktop Local Settings NetHood 		
<u>И</u> мя файла: <mark>*.gmn</mark>	Файл-GRID (*.gmn)	•

Рис. 2.8.3. Диалоговое окно выбора имени открываемого файла

Файл с описанием GRID должен иметь расширение «gmn».

При загрузке файла возможны ошибки из-за использования открываемого файла другой программой. Также ошибки могут возникать при попытке открыть файл, записанный не с помощью данной программы.

2.9 Режим редактирования

Чтобы выбрать «Режим редактирования», можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Режим редактирования» в меню «Правка» (см. рис. 2.9.1).

Правка	Список задач	Моделирован	ие
Доб	бавить вершину	Ctrl+Q	gmn
Доб	бавить дугу	Ctrl+A	
Реж	ким редактировани	ия Ctrl+E	
Уда	лить	Ctrl+Del	

Рис. 2.9.1. «Режим редактирования» из меню

Б) Нажать кнопку «Режим редактирования» на панели инструментов (см. рис. 2.9.2).

GRID	Правка	Список задач	Моделирование
		P 🔳 🗶 🛙	GRID cluster.gmn
		,	
		Режим ре	дактирования

Рис. 2.9.2. Кнопка панели инструментов «Режим редактирования»

В) Использовать комбинацию клавиш Ctrl+E.

2.10 Смещение области видимости

Область построения схемы GRID превышает размеры среднего дисплея. Для перемещения по области построения необходимо навести мышь на поля видимой области (см. рис. 2.10.1 и 2.10.2).

Стр. 22 из 53

Рис. 2.10.1. Схема GRID до перемещения видимой области

Стр. 23 из 53

Рис. 2.10.2. Схема GRID после перемещения видимой области

Стр. 24 из 53

Линии, ограничивающие поля области видимости, могут быть красного или зелёного цвета. Зелёный цвет говорит о возможности сдвига области видимости в этом направлении, красный — о невозможности такого действия.

Границы области построения отображаются в области видимости серой пунктирной линией (см. рис. 2.10.3). Размещение объектов за этой линией невозможно.

2.11 Масштабирование схемы GRID

Программа предусматривает возможность масштабирования схемы GRID (см. рис. 2.11.1 и 2.11.2). Для этого необходимо повернуть колёсо мыши на себя — для уменьшения изображения, и от себя — для увеличения.

Рис. 2.11.1. Схема до масштабирования

Стр. 26 из 53

Рис. 2.11.2. Схема после масштабирования (уменьшения)

2.12 Закрытие программы

Чтобы закрыть программу, можно воспользоваться одним из двух способов:

А) Выбрать пункт «Выход» в меню «GRID» (см. рис. 2.12.1).

Стр. 27 из 53

GRID	Правка	Список задач	Моделиров
н	овый		Ctrl+N
0	ткрыть		Ctrl+O
c	охранить		Ctrl+S
c	охранить к	ак Ctri	l+Shift+S
П	редварите	льный просмотр	Alt+P
П	ечать		Ctrl+P
В	ыход		Alt+X

Рис. 2.12.1. Пункт меню «Выход»

Б) Нажать кнопку «Закрыть» главного окна программы (см. рис. 2.12.2).

Рис. 2.12.2. Кнопка главного окна «Закрыть»

В) Использовать Alt+Х.

Перед закрытием программы убедитесь, что вся важная информация сохранена.

3 Процесс моделирования

3.1 Списки задач для кластеров

Генерация списка задач происходит для периода моделирования, заданного в соответствующих элементах главного окна (см. рис. 3.1.1).

Период испытаний				
100	*	дней	0:00:00	*
Прогон	ок		1 000	* *

Рис. 3.1.1. Установка периода моделирования

Стр. 28 из 53

Для генерации списка задач для кластера необходимо выделить кластер (см. Изменение параметров кластера). После этого нужно выбрать пункт «Создать новый ...» меню «Список задач» (см. рис. 3.1.2).

Рис. 3.1.2. Пункт меню «Создать новый ...»

Стр. 29 из 53

После выбора команды «Создать новый …» откроется диалог выбора названия файла, в который будет записан список сгенерированных задач (см. рис. 3.1.3).

🖳 Сохранить как		×
🔶 – 📕 « (С:) Локальный диск 🕨 Task Files 🛛 – 🤕	Поиск: Task Files	Q
Упорядочить 🔻 Новая папка	:== :==	• 😧
🔶 Избранное 🔶 Имя	Дата изменения	Тип
📕 Загрузки 😑 🧱 ВолгГТУ.txt	16.09.2011 11:44	Текстовый д
Недавние места Рабочий стол		
📴 Рабочий стол		
🧮 Библиотеки		
🔫 Домашняя груп		
💽 poggi		
AppData		
Application Da ⁱ		
Cookies		
Desktop		Þ
Имя файла: *.txt		-
Тип файла: Файлы заданий (*.txt)		-
🔿 Скрыть папки	Сохранить О	тмена

Рис. 3.1.3. Диалог выбора имени файла задач

После выбора имени будет сгенерирован файл со списком задач, и в поле «Файл задач» группы элементов главного окна «Настройка кластера» появится имя этого файла (см.рис. 3.1.4).

Файл задач	
C:\Task Files\MFY.txt	

Рис. 3.1.4. Поле с именем файла задач

Стр. 30 из 53

Действие пункта меню «Открыть существующий ...» (см. рис. 3.1.5) аналогично действию кнопки «...» группы элементов главного окна «Настройка кластера» (см. Изменение параметров кластера).

Рис. 3.1.5. Пункт меню «Открыть существующий ...»

Чтобы задачи для кластера генерировались в процессе моделирования автоматически, необходимо выбрать пункт «Удалить файл» меню «Список задач» (см. рис. 3.1.6).

Рис. 3.1.6. Пункт меню «Удалить файл»

После этого привязка кластера к файлу со списком задач будет удалена. (Сам файл удалён не будет.)

3.2 Задание моделируемых стратегий

Моделирование работы GRID проводится одновременно по нескольким стратегиямраспределения задач по кластерам с использованием одного и того же списка задач длякаждой стратегии. Это позволяет сравнивать результаты использования стратегий.

Для задания моделируемых стратегий необходимо выбрать пункт «Виды испытаний» меню «Моделирование» (см. рис. 3.2.1).

Стр. 31 из 53

Моделиро	вание	Справка		
Начат	гь моде	лирование	F5	
Остан	Остановить моделирование		F6	
Показ	ать стат	гистику	F7	
Истор	оия мод	елирования		•
Виды	испыта	ний	F8	
Оцен	ить наде	ежность кластера	F9	
Смот	реть ста	тистику надежности кластера	Alt+F9	
Оцен	ить наде	ежность линии связи	F10	
Смот	реть ста	тистику наджености линии связи	Alt+F10	
Загру	зить ста	тистику из файла	F11	

Рис. 3.2.1. Пункт меню «Виды испытаний»

После выбора пункта «Виды испытаний» будет выведено окно «Виды испытаний» с текущим списком стратегий (см. рис. 3.2.2).

Рис. 3.2.2. Окно «Виды испытаний»

В окне «Виды испытаний» доступны следующие действия:

- А) Добавление новой стратегии;
- Б) Изменение существующей стратегии;
- В) Удаление выделенной стратегии;
- Г) Очистка списка стратегий;

Д) Сохранение списка стратегий в файл;

Е) Загрузка списка стратегий из файла;

Для добавления и изменения стратегии открывается окно «Параметры стратегии» (см. рис. 3.2.3).

🖳 Параметры стратегии	- • 💌
Используемые оценки	Веса оценок
🔲 Создатель	1,000
🔲 Случайный хост	1,000
Наискорейшего исполнения	1,000
🔲 Минимального риска	1,000
📃 Соотношения свободных узлов кластера	1,000
🔲 Минимальной сложности на узел хоста	1,000
🔲 Оптимальной загрузки	1,000
🔲 Оптимального использования узлов	1,000
🔲 Самого мощного сегмента	1,000
🔲 Балансировки текущей нагрузки между сегмента	1,000
🔲 Среднего времени выполнения подзадачи	1,000
🔲 Количества ждущих подзадач	1,000
Ok	Отмена

Рис. 3.2.3. Окно «Параметры стратегии»

В окне «Параметры стратегии» можно настроить стратегию выбора кластера, на котором будет решаться задача. Каждая стратегия может быть многокритериальной. Для включения критерия в стратегию необходимо установить галочку рядом с названием критерия. Для каждого критерия внутри стратегии указывается вес (т.е. количественная оценка важности критерия).

Стр. 33 из 53

После нажатия кнопки «Сохранить» окна «Виды испытаний» откроется диалоговое окно выбора имени файла для сохранения (см. рис. 3.2.4).

🖳 Сохранить файл испытаний		×
🔶 – 📜 « (С:) Локальный диск 🕨 Task Files 🛛 – 🤡	Поиск: Task Files	Q,
Упорядочить 🔻 Новая папка	8== •	•
🔶 Избранное 🦰 Имя	Дата изменения	Тип
Вагрузки Нет элементов, удовлетворяющ	цих условиям поиска.	
🔤 Рабочий стол		
Рабочий стол		
 Домашняя груп 		
🕵 poggi 📕 AppData		
Application Da		
Cookies		
Desktop		Þ
<u>И</u> мя файла: test		•
<u>Т</u> ип файла: Файлы испытаний (*.xpr)		•
🔿 Скрыть папки	Со <u>х</u> ранить Отм	иена

Рис. 3.2.4. Окно сохранения файла испытания

После выбора имени файл записывается на жёсткий диск.

Стр. 34 из 53

После нажатия кнопки «Загрузить» окна «Виды испытаний» откроется диалоговой окно выбора имени файла для загрузки (см. рис. 3.2.5).

Рис. 3.2.6. Окно выбора имени файла для загрузки списка стратегий

После выбора имени файла из него загружается список стратегий. Файл, хранящий список стратегий, должен иметь расширение «хрг». Открытие файлов, созданных другими приложениями, может привести к ошибке. После завершения редактирования списка стратегий можно закрыть окно «Виды испытаний», нажав на кнопку «Закрыть» этого окна (см. рис. 3.2.7).

Рис. 3.2.7 . Кнопка «Закрыть» окна «Виды испытаний»

3.3 Моделирование

Моделирование работы GRID происходит для периода времени, заданного в соответствующих элементах главного окна (см. рис. 3.3.1).

Период	испыта	ний		
100	* *	дней	0:00:00	*
Прогон	ок		1 000	* *

Рис. 3.3.1. Установка периода моделирования

Необходимо указать период испытаний, задав интервал в днях, часах, минутах и секунд, а так же количество прогонок. Количество прогонок, для объективности результатов, указывать следует не менее 20.

Чтобы начать моделирование, можно воспользоваться одним из двух способов:

А) Выбрать пункт «Начать моделирование» в меню «Моделирование» (см. рис. 3.3.2).

Мод	делирование Справка		
	Начать моделирование	F5	
	Остановить моделирование	F6	
	Показать статистику	F7	
	История моделирования	+	
	Виды испытаний	F8	
	Оценить надежность кластера	F9	
	Смотреть статистику надежности кластера	Alt+F9	
	Оценить надежность линии связи	F10	_
	Смотреть статистику наджености линии связи	Alt+F10	
	Загрузить статистику из файла	F11	

Рис. 3.3.2. Пункт меню «Начать моделирование»

Стр. 36 из 53

Б) Нажать кнопку «Начать моделирование» на панели инструментов (см. рис. 3.3.3).

Рис. 3.3.3. Кнопка панели инструментов «Начать моделирование»

Процент выполнения моделирования виден в индикаторе выполнения (см. рис. 3.3.4).

Рис. 3.3.4. Индикатор выполнения

Процесс моделирования можно остановить в любой момент одним их двух способов:

А) Выбрать пункт «Остановить моделирование» в меню
 «Моделирование» (см. рис. 3.3.5).

Mo,	делирование	Справка		
	Начать модел	пирование	F5	
	Остановить м	юделирование	F6	
	Показать стат	гистику	F7	
	История мод	елирования		•
	Виды испыта	ний	F8	
	Оценить наде	жность кластера	F9	
	Смотреть ста	тистику надежности кластера	Alt+F9	
	Оценить наде	жность линии связи	F10	
	Смотреть ста	тистику наджености линии связи	Alt+F10	
	Загрузить ста	тистику из файла	F11	

Рис. 3.3.5. Пункт меню «Остановить моделирование»

Б) Нажать кнопку «Остановить моделирование» на панели инструментов (см. рис. 3.3.6).

Рис. 3.3.6. Кнопка панели инструментов «Остановить моделирование»

Останавливать моделирование не рекомендуется, т.к. процент смоделированного времени для разных стратегий будет отличаться, что приведёт к неправильному построению статистических данных и некорректности их сравнения.

3.4 Статистика моделирования

3.4.1 Окно статистики

Окно статистики (см. рис. 3.4.1.1) появляется автоматически после окончания моделирования.

🖳 GRID	Model - Статистика моделирования				
Кластер	оы Задачи GRID (таблица) GRID (диаграммы) Линии связи А	нализ результатов			
	Статис	тика узла GRID 🛛 🖸	uster		•
	Параметр	 Наискорейшего исполнения (1); 	2. Минимальной сложности на узел хоста (1);	3.Оптимальной загрузки (1);	4.Соот- свобод кластер
•	Сгенерировано заданий	1035,0000	811,0000	860,0000	722,000 😑
	Получно заданий	350,0000	282,0000	308,0000	236,000
	Отправлено соданий	664,5000	507,0000	578,0000	474,000
	Приступили к исполнению	86,5000	92,0000	75,0000	54,0000
	Исполнений прервано	1,5000	1,0000	0,0000	0,0000
	Исполнений завершено	85,0000	91,0000	75,0000	54,0000
	Ср. время выполенияя задания здесь	0,4261	0,4660	0,4187	0,4808
	Ср. сист. время задания, выполненного здесь	591,1601	255,7496	122,3902	78,8070
	Ср. время ожид. задания, выполненного здесь	590,7341	255,2836	121,9716	78,3262
	Исполнено своих	127,5000	112,0000	116,0000	102,000
	Исполненено своих самим	46,5000	47,0000	26,0000	32,0000
	Отправлено результатлов расчетов	38,5000	44,0000	49,0000	22,0000
	Результатлов расчетов создано	81,0000	65,0000	90,0000	70,0000
	Результатлов расчетов утеряно	0,0000	0,0000	0,0000	0,0000 🖕
•	" "				4
Время Подска:	моделирования: 1000 дней 1:02:01 час:мин:сек зка		(Сохранить как	Закрыть

Стр. 38 из 53

Также окно статистики можно вызвать с помощью пункта «Показать статистику» меню «Моделирование» (см. рис. 3.4.1.2).

Mo	делирование	Справка			
	Начать моде	пирование	F5		
	Остановить м	Остановить моделирование			
	Показать стат	гистику	F7		
	История мод	елирования	•		
	Виды испыта	ний	F8		
	Оценить надежность кластера		F9		
	Смотреть ста	тистику надежности кластера	Alt+F9		
	Оценить наде	ежность линии связи	F10		
	Смотреть ста	тистику наджености линии связи	Alt+F10		
	Загрузить ста	тистику из файла	F11		

Рис. 3.4.1.2. Пункт меню «Показать статистику»

Окно статистики не появится при отсутствии статистических данных, т.е. если не было произведено моделирование. В окне статистики всегда отображается статистика последнего моделирования.

3.4.2 Статистика кластера

Статистику каждого кластера можно посмотреть на вкладке «Кластеры» окна статистики (см. рис. 3.4.2.1).

астер	оы Задачи GRID (таблица) GRID (диаграммы) Линии се	зязи Анализ результатов			
		Статистика узла GRID 🛛	uster		
	Параметр	1.Наискорейшего исполнения (1);	2. Минимальной сложности на узел хоста (1);	3.Оптимальной загрузки (1);	4.Соот- свобод класте;
	Сгенерировано заданий	1035,0000	811,0000	860,0000	722,000
	Получно заданий	350,0000	282,0000	308,0000	236,000
	Отправлено соданий	664,5000	507,0000	578,0000	474,000
	Приступили к исполнению	86,5000	92,0000	75,0000	54,0000
	Исполнений прервано	1,5000	1,0000	0,0000	0,0000
	Исполнений завершено	85,0000	91,0000	75,0000	54,0000
	Ср. время выполенияя задания здесь	0,4261	0,4660	0,4187	0,4808
	Ср. сист. время задания, выполненного здесь	591,1601	255,7496	122,3902	78,8070
	Ср. время ожид. задания, выполненного здесь	590,7341	255,2836	121,9716	78,3262
	Исполнено своих	127,5000	112,0000	116,0000	102,000
	Исполненено своих самим	46,5000	47,0000 44,0000 65,0000	26,0000 49,0000	32,0000 22,0000
	Отправлено результатлов расчетов	38,5000			
	Результатлов расчетов создано	81,0000		90,0000	70,0000
	Результатлов расчетов утеряно	0,0000	0,0000	0,0000	0,0000
	Г Ш			I	Þ
емя	моделирования: 1000 дней 1:02:01 час:мин:сек		(Сохранить как	Закоыл

Стр. 39 из 53

Рис. 3.4.2.1. Вкладка «Кластеры» окна статистики

Чтобы перейти к статистике другого кластера, необходимо выбрать его из списка (см. рис. 3.4.2.2).

Статистика узла GRID	МФТИ 🔻
	МФТИ
 Наискорейше исполнения (1); 	ВолгГТУ МГУ загрузки (1):

Рис. 3.4.2.2. Список кластеров

3.4.3 Статистика появления задач

На вкладке «Задачи» окна статистики (см. рис. 3.4.3.1) выводятся графики появления задач на кластерах с течением времени.

Рис. 3.4.3.1. Вкладка «Задачи» окна статистики

Так как все стратегии распределения задач моделируются на одном и том же наборе задач, графики одинаковы для всех стратегий.

Все графики нормируются относительно кластера сгенерировавшего наибольшее количество задач. На каждом графике отмечается время моделирования в часах и количество сгенерированных задач. Под графиком располагается название кластера, для которого построен график.

Каждый график можно увеличить (см. рис. 3.4.3.2) и затем уменьшить, щёлкнув по нему левой кнопкой мыши.

Стр. 41 из 53

Рис. 3.4.3.2. Увеличенный график появления задач

Если моделирование не было доведено до конца (т.е. было остановлено), графики могут отображаться некорректно.

3.4.4 GRID таблица

На вкладке «GRID таблица» выводится текстовая информация о выполненном моделировании (см. рис. 3.4.4.1).

Стр.	42	ИЗ	53
------	----	----	----

Параметр	1. Наискорейшего исполнения (1);	2. Минимальной сложности на узел хоста (1);	3.Оптимальной загрузки (1);	4.Соотношения свободных узлов кластера (1);	5.Оптимального использования узлов (1);	6.Оптимальной загрузки (1);
Ср. время выполнения задания	0,4303	0,4270	0,4260	0,4150	0,4228	0,4259
Ср. время выполнения задания с учетом прерываний	0,4315	0,4274	0,4270	0,4161	0,4238	0,4271
Ср. длина очереди	1101,0198	1097,8049	1098,4430	1081,0678	1093,9961	1098,7049
Пиковая длина очереди	2185,5000	2181,9000	2181,3000	2160,3000	2175,1000	2180,6000
Заданий создано	2500,4000	2500,4000	2500,4000	2500,4000	2500,4000	2500,4000
Выполнений прервано	2,1000	1,0000	2,1000	1,8000	2,0000	2,0000
ВЫполнений завершено	314,9000	318,5000	319,1000	340,1000	325,3000	319,8000
Ср. время задания в системе	10568,5972	10537,4926	10544,2786	10377,6260	10501,4243	10546,9605
Ср. время ожид. задания	10568,5431	10537,4382	10544,2242	10377,5696	10501,3693	10546,9061
Доля выполненных заданий	0,1259	0,1274	0,1276	0,1360	0,1301	0,1279

Рис. 3.4.4.1. GRID таблица

3.4.5 Диаграммы статистики GRID

На вкладке «GRID (диаграммы)» окна статистики выводится статистика GRID в виде диаграмм (см. рис. 3.4.5.1).

Рис. 3.4.5.1. Вкладка «GRID (диаграммы)»

Каждая диаграмма показывает сравнительную гистограмму одного статистического показателя по всем стратегиям. Каждая диаграмма нормируется отдельно относительно наибольшего значения по своему показателю.

Внизу диаграммы выводится название показателя. Если название не помещается в область вывода, выводится только часть. Посмотреть полное название можно, подведя к названию диаграммы указатель мыши (см. рис. 3.4.5.2).

Рис. 3.4.5.2. Полное название параметра

Каждый столбик показывает относительную величину показателя по определённой стратегии. Чтобы увидеть название стратегии и точное значение показателя по этой стратегии, необходимо подвести указатель мыши к нужному столбику (см. рис. 3.4.5.3).

Рис. 3.4.5.3. Подсказка по столбцу

Для каждого столбика на диаграмму выводится значение статистического показателя по соответствующей стратегии. Вывод значения без десятичной части говорит о том, что десятичная часть равна нулю.

Каждую диаграмму можно увеличить (см. рис. 3.4.5.4) и затем уменьшить, щёлкнув по ней левой кнопкой мыши.

Рис. 3.4.5.4. Увеличенная диаграмма

3.4.6 Линии связи

На вкладке «Линии связи» отображается подробная статистика (см. рис. 3.4.6.1).

Параметр	 Наискорейшего исполнения (1); 	2. Минимальной сложности на узел хоста (1);	3.Оптимальной загрузки (1);	4.Соотношения свободных узлов кластера (1);	5.Оптимального использования узлов (1);	6.Оптимальной загрузки (1);
Кол-во отказов	26,2000	25,7000	30,3000	23,4000	29,2000	28,3000
Ср. время отказа	0,8858	1,0444	0,8440	0,8755	0,7932	0,8399
Макс. время отказа	4,0871	4,1630	3,5151	3,3192	2,5941	3,4085
Мин. время отказа	0,0268	0,0448	0,0273	0,0374	0,0490	0,0273
Кол-во восстановлений	26,2000	25,7000	30,3000	23,4000	29,2000	28,3000
Ср. время безотказной работы	919,7219	937,4250	769,8698	1034,2502	815,0213	874,5838
Макс. время безотказной работы	3498,8433	3405,7727	3352,8996	3945,2921	3146,7865	3324,8299
Мин. время безотказной работы	50,3560	31,6649	29,7449	79,6324	27,2652	40,3041
Коэф. готовности	0,9990	0,9988	0,9989	0,9990	0,9990	0,9990
Время работы	0,0010	0,0011	0,0011	0,0009	0,0010	0,0010
Ср. размер резерва	1,0000	1,0002	0,9997	1,0000	0,9998	1,0000
Время иммитации	24001,0339	24001,0339	24001,0339	24001,0339	24001,0339	24001,0339

Рис. 3.4.6.1. Статистика по линии связи

Для вывода связи по конкретной линии связи необходимо выбрать эту связь в меню. (см. рис. 3.4.6.2).

Линия свя	зи МФТИ - ВолгГТУ	-
	МФТИ - ВолгГТУ	
мальной	МФТИ - МГУ З Ортимальной	

Рис. 3.4.6.2. Выбор линии связи

3.4.7 Анализ результатов

После выполнения процедуры моделирования, пользователю предоставляется возможность получить статистику по проведенной программой работе.

Тара	аметры линий связи 🔻 МГУ	▼ MΦ	ТИ - ВолгГТУ	- Диспер	сия	
	Параметр		1.Наискорейц 1.Наискорейшего исполнения (1);	цего исполнения сложности на узел хоста (1);	(1); 3.Оптимальной загрузки (1);	4.Соотно свободны кластера
Þ	Кол-во отказов		21,9556	35,5667	15,7889	54,4889
	Ср. время отказа		0,0398	0,0643	0,0181	0,0303
	Макс. время отказа		0,7402	2,1306	1,0749	1,6627
	Мин. время отказа		0,0007	0,0021 0,0008 35,5667 15,7889	0,0008	0,0020
	Кол-во восстановлений		21,9556		15,7889	54,4889
	Ср. время безотказной работы		27206,7045 4836	48369,0931	9801,1475	122973,22
	Макс. время безотказной работы		746407,9732	1649241,7783	1251533,1335	2752692,
	Мин. время безотказной работы		3838,8100 582,6279 0,0000 0,0000	582,6279	329,3275	8460,357
	Коэф. готовности			0,0000	0,0000	0,0000
	Время работы		0,0000	0,0000	0,0000	0.0000
	Ср. размер резерва		0,0000	0,0000	0,0000	0,0000
	Время иммитации		0,0000	0,0000	0,0000	0,0000
• [ш Казытирь 3.00		Желаемая погрешь	ность (%)		5.0

Стр. 46 из 53

Рис. 3.4.7.1. Окно анализа результатов

Основное окно содержит вкладки:"Кластеры", "Задачи", "GRID (диаграммы)", "Линии связи", "Анализ результатов".

Рис. 3.4.7.2. Основное меню выбора

Внизу окна возможна настройка Погрешности и квантиля.

Квантиль 3.000 🖨 Желаемая погрешность (%) 5.0

Рис. 3.4.7.3. Дополнительные настройки

В зависимости от выбранной вкладки, выводится подробная статистика с таблицами.

Можно выбрать параметры:

Рис. 3.4.7.4. Выбор параметров

ВолгГТУ	•
ВолгГТУ	
МФТИ	
MEY	

Рис. 3.4.7.5. Выбор узла

Рис. 3.4.7.6. Выбор линии связи

Мат.ожид.	-
Мат.ожид.	
Дисперсия	
CKO	
Дисперсия среднего	
СКО среднего	
Доверительный интервал	
Требуемое число прогонок	
0.2570	0.2400

Рис. 3.4.7.7. Выбор параметра

По полученным данным возможно провести анализ данных.

На основе анализа дисперсии полученных данных определяется необходимое количество испытаний модели.

3.4.8 Сохранение статистики

Статистика моделирования сохраняется в текстовый файл.

Чтобы сохранить статистику, необходимо нажать на кнопку «Сохранить как ...» окна статистики. После этого будет выведено диалоговое окно для выбора имени файла для сохранения (см. рис. 3.4.8.1).

Стр. 48 из 53

🖳 Сохранить как	×
🖕 🍦 – 📕 « (С:) Локальный диск 🕨 Task Files 🛛 👻 🏹	Поиск: Task Files Q
Упорядочить 🔻 Новая папка	1= 🗸 🔞
 Избранное Загрузки Загрузки Недавние места Рабочий стол 	Дата изменения Тип цих условиям поиска.
 Рабочий стол Библиотеки Домашняя груп poggi AppData Application Dar Cookies Decktop 	
	•
<u>И</u> мя файла: <u>Т</u> ип файла: Файл статистики (*.gstt)	• •
🔿 Скрыть папки	Сохранить Отмена

Рис. 3.4.8.1. Окно сохранения статистики

3.5 Просмотр истории моделирования

Для сохранения истории моделирования во время моделирования необходимо, чтобы была установлена галочка пункта «Сохранять историю» подменю «История моделирования» меню «Моделирование» (см. рис. 3.5.1).

Стр. 49 из 53

M	оделирование Справка			
	Начать моделирование	F5		
	Остановить моделирование	F6		 Настройка кластера
-	Показать статистику	F7	-	Название МФТИ
•	История моделирования	•		Просмотр истории моделирования 🕨 🕨
	Виды испытаний	F8	~	Сохранять историю
1	Оценить надежность кластера	F9	_	2,330 🖨 GHz 4,000 🖨 F
	Смотреть статистику надежности кластера	Alt+F9		Резерв 8 🛓 Ремонт 1
	Оценить надежность линии связи	F10		Время простоя, ч
	Смотреть статистику наджености линии связ	и Alt+F10		Вер. необнаруж. отказа 0,0
	Загрузить статистику из файла	F11		Настраиваемый закон

Рис. 3.5.1. Пункт меню «Сохранять историю»

Если история моделирования сохранялась, по окончании моделирования будет доступен её просмотр. Для этого необходимо выбрать один из пунктов подменю «Просмотр истории моделирования» (см. рис. 3.5.2).

Моделиро	ование Справка		_		
Нача	ть моделирование	F5			
Остановить моделирование		F6			Настройка кластера
Пока	Показать статистику				Название МФТИ
Ис	Ис Наискорейшего исполнения (1);		П	росмотр и	истории моделирования 🔹 🕨
Ви	Минимальной сложности на узел хо	оста (1);	🗸 Ca	хранять і	историю
Οι	Оптимальной загрузки (1);				2,330 🚔 GHz 4,000 🚔
CN	Соотношения свободных узлов клас	стера (1);			Резерв 8 🛓 Ремонт 1
OL	Оптимального использования узлов	в (1);			Время простоя ч
CN	Оптимальной загрузки (1);		I		
Загру	Загрузить статистику из файла F11		1		вер. неоонаруж. отказа U Настраиваемый закон

Рис. 3.5.2. Подменю «Просмотр истории моделирования»

Каждый пункт подменю «Просмотр истории моделирования» представляет одну из стратегий, по которым производилось моделирование, и соответственно запускает просмотр истории моделирования именно этой стратегии.

Во время просмотра на схему GRID выводятся дополнительные параметры (см. рис. 3.5.3).

Рис. 3.5.3. Схема GRID при просмотре истории моделирования

Для каждого кластера дополнительные параметры выводятся в следующем формате (см.рис. 3.5.4): «<процент загруженности> <количество задач в очереди>/<суммарное количество ядер, требующееся задачам в очереди>».

Рис. 3.5.4. Отображение кластера при просмотре истории моделирования

Также для каждого кластера демонстрируется графическое отображение загруженности (см. рис. 3.5.4). Чем краснее и длиннее полоса справа от изображения кластера, тем больше он загружен.

Для каждой линии связи дополнительные параметры выводятся в следующем формате (см. рис. 3.5.5): «<количество пакетов в очереди на передачу>/<суммарный объём пакетов в очереди на передачу>».

Рис. 3.5.5. Отображение линии связи при просмотре истории моделирования

Цвет фона дополнительных параметров (см. рис. 3.5.5) отражает состояние линии связи:

А) Зелёный означает, что линия свободна;

Б) Жёлтый означает, что по линии передаются данные;

В) Красный означает, что линия вышла из строя;

Просмотром истории моделирования можно управлять с помощью группы элементов главного окна «Просмотр результатов» (см. рис. 3.5.6).

Просмотр результатов						
	Шаг	0,01	×.	ч за 10 мс		

Рис. 3.5.6. Группа элементов «Просмотр результатов»

Возможны следующие действия:

А) Приостановка просмотра истории;

Б) Возобновление просмотра истории;

В) Изменение временного масштаба;

Г) Остановка просмотра истории;

Для приостановки просмотра истории моделирования необходимо нажать кнопку «Стоп» группы элементов «Просмотр истории» (см. рис. 3.5.6).

Для возобновления просмотра истории моделирования необходимо нажать кнопку «Воспроизведение» группы элементов «Просмотр истории», для изменения временного масштаба просмотра истории необходимо изменять значение шага просмотра.

Изменять значение шага просмотра можно с помощью кнопок увеличения и уменьшения прямо во время просмотра. Для остановки просмотра истории необходимо выбрать «Режим редактирования» (см. Режим редактирования).

По окончании истории моделирования программа автоматически возвращается в режим редактирования.

4 Справка

4.1 Помощь

Чтобы вызвать помощь по программе, можно воспользоваться одним из трёх способов:

А) Выбрать пункт «Помощь» в меню «Справка» (см. рис. 4.1.1).

Рис. 4.1.1. Пункт меню «Помощь»

Б) Нажать кнопку «Справка» на панели инструментов (см. рис. 4.1.2).

GRID default	
Справка	

Рис. 4.1.2. Кнопка панели инструментов «Справка»

В) Использовать клавишу F1

Для отображения помощи из программы необходимо, чтобы папка «Help» со справочными файлами находилась в том же каталоге, что и исполняемый файл программы. Если программа обнаружит файл помощи, будет выведено окно справки по программе.

4.2 О программе

Программа разработана в рамках производственной практики студентов Гаевого С.В. И Шафрана Ю.В. под руководством Жарикова Д.Н. на кафедре «ЭВМ и Систем» ВолгГТУ.

Чтобы просмотреть сведения о программе, необходимо выбрать пункт «О программе» меню «Справка» (см. рис. 4.2.1).

Рис. 4.2.1. Пункт меню «О программе»

После этого будет выведено окно, содержащее сведения о программе (см. рис. 4.2.2).

Рис. 4.2.2. Окно сведений о программе