МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ТЕХНОЛОГИИ ПИЩЕВЫХ ПРОИЗВОДСТВ КАФЕДРА «ПРОМЫШЛЕННАЯ ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

ОЧИСТНЫЕ СООРУЖЕНИЯ ОБЪЕКТОВ ТРАНСПОРТА И ХРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ. КОНТРОЛЬНАЯ РАБОТА

Методические указания

Рецензент канд. хим. наук $\it C.\,M.\, \it Леденев$

Печатается по решению редакционно-издательского совета Волгоградского государственного технического университета

Очистные сооружения объектов транспорта и хранения нефти и нефтепродуктов. Контрольная работа: метод. указания /сост. Г. А. Севрюкова; ВолгГТУ. – Волгоград, 2017. – 16 с.

Методические указания содержат общие требования к оформлению контрольной работы, варианты контрольных работ, образец оформления титульного листа и список литературы.

Предназначены для студентов, обучающихся по направлению подготовки 43.03.01 «Сервис», профиль подготовки «Сервис в нефтегазовых комплексах».

© Волгоградский государственный технический университет, 2017

ВВЕДЕНИЕ

Целью преподавания дисциплины «Очистные сооружения объектов транспорта и хранения нефти и нефтепродуктов» является формирование теоретических знаний и практических умений у студентов в области современных и перспективных сооружений для очистки нефтесодержащих сточных вод объектов транспорта и хранения нефти и нефтепродуктов.

Задачи изучения дисциплины:

- раскрыть основные понятия дисциплины в рамках функционирования нефтегазовой отрасли с точки зрения потенциальной опасности взаимодействия человека с промышленной средой;
- дать представление о технологии очистки сточных вод от нефтепродуктов;
- дать студентам основные понятия по организационным и правовым вопросам в рамках нефтегазового сервиса.

ВАРИАНТ ВЫБИРАЕТСЯ ПО НОМЕРУ В СПИСКЕ ГРУППЫ В ЖУРНАЛЕ

ОБЩИЕ ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

- 1. Контрольную работу набирают в Word;
- 2. При наборе использовать шрифт Times New Roman 14 шт.
- 3. Интервал между строк полуторный; выравнивание по ширине;
- 4. В тексте делают красные строки с отступом в 1,25 мм;
- 5. Нижнее и верхнее поля -20 мм; слева -30 мм, справа -15 мм;
- 6. Контрольная работа всегда нумеруется с первого листа, но на титульном листе номер не ставят;

Номер страницы в работе всегда выставляется в нижнем углу справа;

- 7. Заголовки работы набираются прописными буквами и оформляются жирным шрифтом; в конце заголовков точка не предусмотрена;
- 8. Работа отправляется по e-mail не позднее 30 дней до зачета или экзамена;
 - 9. Текст должен располагаться только на одной стороне листа.

Обязательно должны быть ссылки на литературу.

Контрольная работа состоит теоретической и практической частей и имеет следующую структуру:

Титульный лист;

Задание с исходными данными;

Основной текст теоретической части контрольной работы;

Решение задания практической части контрольной работы;

Перечень использованной литературы.

БЕЗ ЗАЧТЕННОЙ КОНТРОЛЬНОЙ РАБОТЫ СТУДЕНТ К СДАЧЕ ЭКЗАМЕНА или ЗАЧЕТУ НЕ ДОПУСКАЕТСЯ.

ВАРИАНТЫ КОНТРОЛЬНЫХ РАБОТ

Вариант 1

- 1) Современные проблемы очистки нефтесодержащих сточных вод нефтегазового комплекса.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 1)

Вариант 2

- 1) Характеристика нефтесодержащих сточных и балластных вод.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 2)

Вариант 3

- 1) Виды нефтебаз в зависимости от функционального назначения. Генеральный план нефтебазы с элементами систем водоотведения.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 3)

Вариант 4

- 1) Водоотведение нефтебаз и перекачивающих станций.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 4)

Вариант 5

- 1) Характеристика производственных и дождевых нефтесодержащих сточных вод.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 5)

Вариант 6

- 1) Условия спуска в водоемы нефтесодержащих сточных вод и порядок оформления специального водопользования.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 6)

Вариант 7

- 1) Характеристика системы водоотведения нефтебаз. Принципиальная схема водоотведения нефтебаз.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 7)

Вариант 8

1) Очистка сточных вод от нефтепродуктов механическими методами. Очистка сточных вод в нефтеловушках.

2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 8)

Вариант 9

- 1) Очистка сточных вод от нефтепродуктов механическими методами. Отстаивание сточных вод в буферных резервуарах.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 9)

Вариант 10

- 1)Очистка сточных вод от нефтепродуктов механическими методами. Отстаивание сточной воды с помощью вспомогательных отстойных сооружений песколовках.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 10)

Вариант 11

- 1) Способы доочистки нефтесодержащих вод после нефтеловушек Отстойные пруды.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 11)

Вариант 12

- 1) Очистка сточных вод, содержащих дисперсные примеси нефтепродуктов в гидроциклонах.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 12)

Вариант 13

- 1) Очистка сточных вод, содержащих эмульгированные и тонкодиспер-гированные нефтепродукты фильтрованием.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 7)

Вариант 14

- 1) Очистка сточных вод от нефтепродуктов флотационными методами. Механическая флотация.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 1)

Вариант 15

1) Очистка сточных вод от нефтепродуктов флотационными методами. Пневматическая флотация.

2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 2)

Вариант 16

- 1) Классификация и технологические схемы напорных флотационных установок.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 3)

Вариант 17

- 1) Очистка сточных вод от нефтепродуктов с помощью методов коагуляции и флокуляции.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 4)

Вариант 18

- 1) Сорбционный метод очистки сточных вод от нефтепродуктов.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 5)

Вариант 19

- 1) Очистка сточных вод от нефтепродуктов с помощью метода химического окисления органических примесей озоном озонирование.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 6)

Вариант 20

- 1) Особенности и методы обезвреживания сточных вод, содержащих тетраэтилсвинец на нефтебазах.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 7)

Вариант 21

- 1) Испарительное и термическое обезвреживание нефтесодержащих сточных вод.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 8)

Вариант 22

- 1) Очистка сточных вод от нефтепродуктов электрохимическими методами. Сущность электрохимической коагуляции и флотации.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 9)

Вариант 23

- 1) Очистка сточных вод от нефтепродуктов биохимическими методами. Аэротенки и вторичные отстойники.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 10)

Вариант 24

- 1) Вспомогательные устройства и эксплуатация очистных сооружений нефтебаз.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа PBC (вариант № 11)

Вариант 25

- 1) Технологический и лабораторный контроль работы очистных сооружений нефтебаз.
- 2) Рассчитать выбросы паров нефтепродуктов в атмосферу из резервуаров типа РВС (вариант № 12)

Выполнение практической части:

Расчет выбросов паров нефтепродуктов в атмосферу из резервуаров типа PBC (резервуары вертикальные стальные)

Задание: на нефтебазе хранятся различные нефтепродукты в РВС. Рассчитать максимальные и годовые выбросы в атмосферу.

Данные по вариантам приведены в таблице 1, а также в приложении 2, 3, 4. Расчеты оформить в виде таблиц 2, 3.

Заключение: Максимальные выбросы в атмосферу – $(M, \Gamma/c)$

Годовые выбросы в атмосферу – (G, т/год).

Таблица 1 – Варианты исходных данных

Исходные	Наименование хранящегося продукта								
параметры	Бензи	н автомобил			Бензин авиационный				
			№ вар	анта					
	1	2	3	4	5	6			
$V_{\rm q}^{\rm max}$, ${\rm M}^3/{\rm q}$	300	350	400	300	350	400			
В ₀₃ , т	15000	17000	16000	18000	18000	17000			
	25000	25000	24000	22000	24000	23000			
$B_{\text{вл, T}}$ $V_{\text{p, M}}^3$	10000	7000	5000	5000	7000	10000			
N _p , шт	4	6	8	8	6	4			
CCB	отсут.	отсут.	отсут.	отсут.	отсут.	отсут.			
	Понтон	Понтон	Понтон	Понтон	Понтон	Понтон			
	ГОР	ГОР	ГОР	ГОР	ГОР	ГОР			
Режим	мерник								
эксплуатации									
Исходные	Керо	син техниче	ский	Диз	ельное топл	иво			
параметры			№ вар	ианта					
	7	8	9	10	11	12			
$V_{\rm q}^{\rm max}$, ${\rm M}^3/{\rm q}$	70	90	100	160	180	200			
В _{оз} , т	1600	1500	1400	2200	3500	5000			
B_{BH} , T	2600	2500	2600	3800	4500	4000			
V_p, M^3	700	1000	2000	1000	2000	3000			
N _p , шт	6	4	2	6	4	3			
CCB	отсут.	отсут.	отсут.	отсут.	отсут.	отсут.			
	Понтон	Понтон	Понтон	Понтон	Понтон	Понтон			
	ГОР	ГОР	ГОР	ГОР	ГОР	ГОР			
Режим			мері	ник					
эксплуатации									

Таблица 2 – Исходные данные по варианту

Наименование хранящегося продукта	$V_{\rm q}^{\rm max}$, $M^3/{\rm q}$	B ₀₃ ,	В _{вл} , т	Конструкция резервуара	Режим эксплуатации	V _р ,	N _p , шт	ССВ
Бензин автомобильный								

Таблица 3 – Табличные данные

	Tac	бличные дан	Выброс	ы расчетные		
C1	У2	У3	M, Γ/c	G, т/год		

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Тетельмин, В.В. Защита окружающей среды в нефтегазовом комплексе [Текст]: учеб. пособие /В.В. Тетельмин, В.А. Язев. Долгопрудный: ИД «Долгопрудный», 2009. 351 с. (Нефтегазовая инженерия).
- 2. Безопасность жизнедеятельности. Безопасность технологических процессов и производств. Охрана труда [Текст]: учеб. пособие для студ. Вузов /П.П. Кукин [и др.]. М.: Высш. шк., 2007. 334 с.
- 3. Кудашев, С.В. Вредные вещества: основы гигиенического нормирования и защиты от их воздействия: учеб. пособие /С.В. Кудашев, В.Ф. Желтобрюхов; ВолгГТУ. Волгоград, 2014. 63 с.
- 4. Картушина Ю.Н. Обращение с твердыми отходами /Ю.Н. Картушина, В.Ф. Желтобрюхов, Г.А. Севрюкова. Волгоград: ВолгГТУ, 2016. 96 с.
- 5. Объекты сервиса нефтегазовой отрасли. Газораспределние /В.Н. Карев, А.Б. Голованчиков, С.М. Леденев и др. Волгоград: ВолгГТУ, 2015. 246 с.
- 6. Кокорина Н.Г. Детоксикация нефтезагрязненных почв хитозаном: монография /Н.Г. Кокорина, А.А. Околелова, А.Б. Голованчиков. Волгоград: ВолгГТУ, 2012. 204 с.

Волгоградский государственный технический университет Кафедра промышленной экологии и безопасности жизнедеятельности

Контрольная работа по дисциплине «Очистные сооружения объектов транспорта и хранения нефти и нефтепродуктов» вариант №

Выполнил студент (к	(a)
	ФИО
	Группа
Проверил(а): д.б.н., г	профессор кафедры ПЭБЖ
Севрюкова Г.А	
	Зачтена / не зачтена

Волгоград 200_

	Значе		іх коэффици	ентов Кр		
Категория	Конструкции	K _p max или	Объем резе	ервуара, V _р ,	M^3	
	резервуаров	K ^{cp}	100 и ме-	200-400	700-1000	2000 и
			нее			более
Режим экст	луатации – «мерн	ик»; ССВ –	отсутствует			
A	Наземный вер-	K_p^{max}	0,9	0,87	0,83	0,8
	тикальный	K ^{cp}	0,63	0,61	0,58	0,56
	Заглубленный	K _p ^{max}	0,8	0,77	0,73	0,7
		K ^{cp}	0,56	0,54	0,51	0,5
	Наземный го-	K_p^{max}	1	0,97	0,93	0,9
	ризонтальный	K _p ^{max}	0,7	0,68	0,65	0,63
Б	Наземный вер-	K _p ^{max}	0,95	0,92	0,88	0,85
	тикальный	K ^{cp}	0,67	0,64	0,62	0,6
	Заглубленный	K _p ^{max}	0,85	0,82	0,78	0,75
		K ^{cp}	0,6	0,57	0,55	0,53
	Наземный го-	K _p ^{max}	1	0,98	0,96	0,95
	ризонтальный	K ^{cp}	0,7	0,69	0,67	0,67
В	Наземный вер-	K _p ^{max}	1	0,97	0,93	0,9
	тикальный	K ^{cp}	0,7	0,68	0,65	0,63
	Заглубленный	K _p ^{max}	0,9	0,87	0,83	0,8
			0,63	0,61	0,58	0,56
	Наземный го-	K _p max	1	1	1	1
	ризонтальный	K ^{cp}	0,7	0,7	0,7	0,7
Режим экст	ілуатации – «мерн	ик»; ССВ –	понтон			
А, Б, В	Наземный вер-	K _p ^{max}	0,2	0,19	0,17	0,16
	тикальный	K ^{cp}	0,14	0,13	0,12	0,11
Режим экст	ілуатации – «мерн	ик»; ССВ –	плавающая і	крыша		
А, Б, В	Наземный вер-	K _p ^{max}	0,13	0,13	0,12	0,11
	тикальный	K ^{cp}	0,094	0,087	0,08	0,074
Режим экст	ілуатации – «буфе	рная емкост	ъ»			
А, Б, В	Все типы кон-	K _p	0,1	0,1	0,1	0,1
	струкций					

Нефтепродукт				Климат	Климатическая зона					Кпп
	1			2			3			t = 20
	C_1 ,	У2,	У3,	C_1 ,	У2,	У3,	C_1 ,	У2,	У3,	C
	Γ/M^3	Γ/T	Γ/T	Γ/M^3	Γ/T	Γ/T	Γ/M^3	Γ/T	Γ/T	
Бензин	777,6	639,6	880	972	780	1100	1176	976,2	1331	1,1
Бензин авиац.	576	393,6	656	720	480	820	871,2	595,2	992	0,57
Бензол	293,8	114,8	248	367,2	140	310	444,3	173,6	375	0,45
Толуол	100,8	34,44	80	126	42	100	152,5	52,08	121	0,17
Ксилол	31,68	9,02	24	39,6	11	30	47,92	13,64	36,3	0,059
Керосин тех.	9,79	4,84	8,8	12,24	5,9	11	14,81	7,32	13,3	0,01
Керосин осв.	6,91	3,61	6,32	8,64	4,4	7,9	10,45	5,46	9,56	0,0071
Дизельное	2,59	1,56	2,08	3,14	1,9	2,6	3,92	2,36	3,15	0,0029
топливо										
Моторное то-	1,15	0,82	0,82	1,44	1	1	1,74	1,24	1,24	0,0011
пливо										
Мазуты	4,32	3,28	3,28	5,4	4	4	6,53	4,96	4,96	0,0043
Масла	0,26	0,16	0,16	0,324	0,2	0,2	0,39	0,25	0,25	0,0002
										7

2	1	при хр	анении в одном				
V_p, M^3				ид резервуа	<u> </u>	T	
			смный	Заглубленный	Горизонтальный		
	Сре	едства сокра	щения выбросс				
	отсутствует понтон пл. крыша ГОР						
	атическая зона					<u> </u>	
100 и	0,18	0,04	0,027	0,062	0,053	0,18	
менее							
200	0,31	0,066	0,44	0,108	0,092	0,31	
300	0,45	0,097	0,063	0,156	0,134	0,45	
400	0,56	0,12	0,079	0,196	0,17	0,56	
700	0,89	0,19	0,12	0,312	0,27	-	
1000	1,21	0,25	0,17	0,42	0,36	-	
2000	2,16	0,42	0,28	0,75	0,65	-	
3000	0,03	0,59	0,4	1,06	0,91	-	
5000	4,7	0,92	0,62	1,64	1,41	-	
1000	8,18	1,6	1,08	2,86	2,45	-	
15000	11,99	2,36	1,59	4,2	3,6	-	
и более							
2-я клим	атическая зона						
100 и	0,22	0,049	0,033	0,077	0,066	0,22	
менее							
200	0,38	0,081	0,054	0133	,0,114	0,38	
300	0,55	0,12	0,078	0,193	0,165	0,55	
400	0,69	0,15	0,098	0,242	0,21	0,69	
700	1,1	0,23	0,15	0,385	0,33	=	
1000	1,49	0,31	0,21	0,52	0,45	=	
2000	2,67	0,52	0,35	0,93	0,8	-	
3000	3,74	0,73	0,49	1,31	1,12	-	
5000	5,8	1,14	0,77	2,03	1,74	-	
1000	10,1	1,98	1,33	3,53	3,03	-	
15000	14,8	2,91	1,96	5,18	4,44	-	
и более							
3-я клим	атическая зона						
100 и	0,27	0,06	0,041	0,095	0,081	0,27	
менее							
200	0,47	0,1	0,066	0,164	0,142	0,47	
300	0,68	0,157	0,096	0,237	0,203	0,68	
400	0,85	0,18	0,121	0,298	0,26	0,85	
700	1,35	0,28	0,18	0,474	0,41	-	
1000	1,83	0,38	0,26	0,64	0,55	=	
2000	3,28	0,64	0,43	1,12	0,98	=	
3000	4,6	0,9	0,6	1,61	1,38	-	
5000	7,13	1,4	0,95	1,64	2,14	-	
1000	12,42	2,44	1,64	2,5	3,73	-	
15000	18,2	3,58	2,41	4,34	5,46	-	
и более				1			

Составители:

Галина Александровна Севрюкова

ОЧИСТНЫЕ СООРУЖЕНИЯ ОБЪЕКТОВ ТРАНСПОРТА И ХРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ. КОНТРОЛЬНАЯ РАБОТА

Методические указания

Темплан 2017 г. (учебно-методическая литература). Поз. № 296. Подписано в печать 9.03.2017 г. Формат 60×84 1/16. Бумага офсетная. Гарнитура Times. Печать офсетная. Усл. печ. л. 0,93. Тираж 10 экз. Заказ .

Волгоградский государственный технический университет. 400005, г. Волгоград, пр. Ленина, 28, корп. 1.

Отпечатано в типографии ИУНЛ ВолгГТУ 400005, г. Волгоград, пр. Ленина, 28, корп. 7.