ЗАДАЧИ К КОНТРОЛЬНОЙ РАБОТЕ ПО КУРСУ «ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В СЕРВИСЕ»

Задача 1

В вертикальном цилиндрическом резервуаре диаметром d=4 м хранится 100 м нефти, плотность которой при 0 °C $\rho_0=850$ кг/м³.

Определить изменение уровня в резервуаре при изменении температуры нефти от 0 до 30 °C. Расширение резервуара не учитывать. Коэффициент теплового расширения нефти $\beta_m = 0.00072~1/$ градус.

Задача 2

Определить плотности воды и нефти при 4 °C, если известно, что 10 л воды при 4 °C имеют массу 10 кг, а масса того же объема нефти равна 8,2 кг. Сравнить плотность нефти с плотностью воды.

Задача 3

Цистерна заполнена нефтью плотностью $p = 850 \ \kappa c/m^3$. Диаметр цистерны $d = 3 \ \text{м}$, длина $l = 6 \ \text{м}$. Определить массу жидкости в цистерне.

Задача 4

Найти плотность смеси жидкостей $\rho_{\scriptscriptstyle CM}$, имеющей следующий массовый состав: керосина - 30 %, мазута - 70 %, если плотность керосина $\rho_{\scriptscriptstyle K}=790~\kappa {\sc km}^3$, а мазута $\rho_{\scriptscriptstyle M}=900~\kappa {\sc km}^3$.

Задача 5

Определить, насколько поднимется уровень нефти в цилиндрическом резервуаре при увеличении температуры от 15 до 40 °C. Плотность нефти при 15 °C $\rho_{15} = 900~\kappa c/m^3$. Диаметр резервуара d = 10~m; нефть заполняет резервуар при 15 °C до высоты H=12~m. Коэффициент теплового объемного расширения нефти $\beta_m = 0,00064~1/cpadyc$.

Расширение резервуара не учитывается.

В закрытом резервуаре с нефтью ρ = 880 $\kappa c/m^3$ вакуумметр, установленный на его крышке, показывает $p_e = 1.18 \cdot 10^4 \, \Pi a$ (рис. 1).

Определить показание манометра $p_{\rm M}$, присоединенного к резервуару на глубине H=6~m от поверхности жидкости, и положение пьезометрической плоскости.

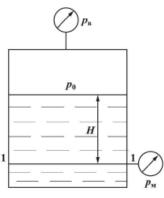


Рис. 1

Задача 7

Определить давление на забое закрытой газовой скважины (рис. 2), если глубина скважины H=2200~m, манометрическое давление на устье $p_{\scriptscriptstyle M}=10.7~M\Pi a$, плотность природного газа при атмосферном давлении и температуре в скважине (считаемой неизменной по высоте) $\rho=0.76~\kappa z/~m^3$, атмосферное давление $p_a=98~\kappa\Pi a$.

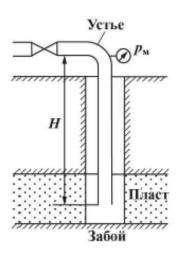


Рис.2

Из открытого резервуара с постоянным уровнем (рис. 3) идеальная жидкость по горизонтальной трубе вытекает в атмосферу,

 $H = 1.6 \text{ m}; \ d_1 = 0.15 \text{ m}; \ d_2 = 0.075 \text{ m}.$

Определить уровень жидкости в пьезометре h.

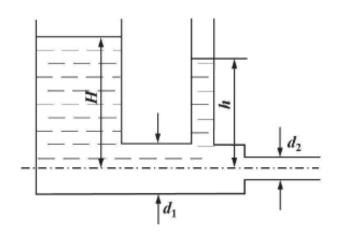
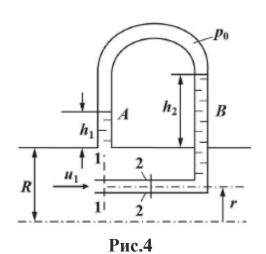
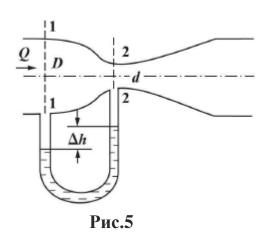


Рис.3


Задача 9

По трубе d=0,1 м течет вода. Определить максимальные скорость течения v и расход Q, при которых режим течения будет оставаться ламинарным. Вязкость воды $\eta=10^{-3}$ кг /м·с.

Задача 10


Определить, пренебрегая потерями напора, скорость течения нефти на расстоянии r от оси трубопровода радиусом R при помощи устройства (трубка Пито), показанного на рис. 4.

Уровень жидкости в трубке А $h_1 = 1,2$ м, в трубке В $h_2 = 1,35$ м.

Найти при помощи устройства, показанного на рис. 5 (расходомер Вентури), объемный расход керосина ($\rho=850~{\rm kr/~m}^3$). Диаметр трубопровода $D=0.3~{\rm m}$; диаметр узкого сечения расходомера $d=0.1~{\rm m}$.

Разность уровней ртути в дифманометре $\Delta h = 0,025$ м. Режим течения турбулентный. Потерями напора можно пренебречь.

Задача 12

По трубопроводу диаметром d =0,15 м перекачивается нефть плотностью ρ = 950 кг/ m^3 в количестве 1500 т/ сут.

Определить объемный расход Q и среднюю скорость течения v.

Задача 13

По трубопроводу течет вязкая нефть при ламинарном режиме движения. Как изменятся потери напора на трение по длине, если расход нефти снизится в 2 раза?

Задача 14

При течении нефти в трубопроводе диаметром d=0,2 м массовый расход Q=35 т / ч. Нефть заполняет сечение трубопровода до высоты h=d / 2. Вязкость нефти $\eta=0,12$ кг/ (м·с).

Определить режим течения.

В боковой плоской стенке резервуара с реактивным топливом $(\rho = 800 \ \kappa z \ /m^3)$ имеется круглый люк диаметром d = 0,5 м, закрытый полусферической крышкой (рис. 6). Высота жидкости в резервуаре над осью люка H=3 м, вакуум на ее свободной поверхности $p_e=4,9$ к Πa . Определить горизонтальную и вертикальную составляющие силы давления жидкости на крышку люка, а также величину их равнодействующей и ее направление.

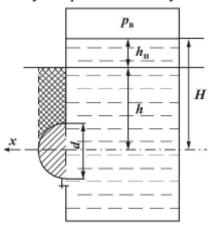


Рис. 6

Задача 16

Для слива жидкости из бензохранилищ имеется квадратный патрубок со стороной h=0,3 м, закрытый крышкой, шарнирно закрепленной в точке 0. Крышка опирается на торец патрубка и расположена под углом 45° ($\alpha=45^{\circ}$) к горизонту (рис. 7). Определить (без учета трения в шарнире 0 и рамке B) силу F натяжения троса, необходимую для открытия крышки A0, если уровень бензина H=3 M, давление над ним, измеренное манометром, $p_{M}=5$ $\kappa\Pi a$, а плотность бензина $\rho=700$ кг/м 3 . Вес крышки не учитывать.

Рис. 7

Определить полезную мощность насоса (рис. 8), перекачивающего бензин ($\rho=750~{\rm kr/m^3}$) из резервуара A в резервуар B, если $h_I=1~{\rm m};\ h_3=5~{\rm m};$ расход бензина $Q=10^{-3}~{\rm m^3/c};\ D=0,1~{\rm m};\ d=0,05~{\rm m}$. Потери во всасывающей линии равны 2 м, а в нагнетательной -5 м. Оба резервуара открытые .

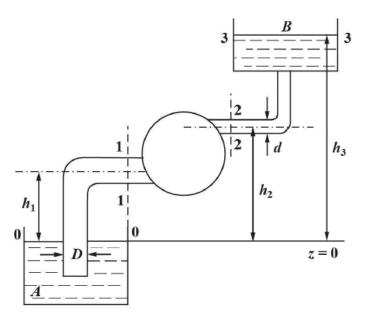
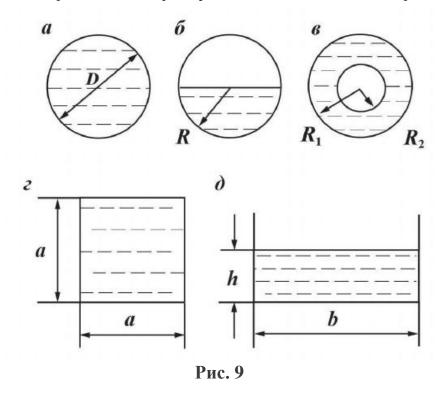
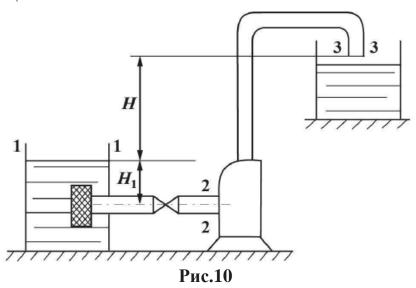



Рис. 8

Задача 18


Вычислить гидравлический радиус для живых сечений на рис. 9, а-д.

Насос (рис. 10) подает дизельное топливо ($\rho=840~{\rm кг/m^3},~v=5,5\cdot10^{-6}~{\rm m^2/c}$) из нижнего резервуара в верхний с расходом $Q=16~{\rm дm^3/c}$, давление на поверхностях жидкости в резервуарах одинаковое. Высота подъема топлива $H=20~{\rm m},~H_1=3~{\rm m}.$ На всасывающей линии ($l_{\rm B}=10~{\rm m},~d_{\rm B}=125~{\rm mm}$) установлены фильтр для светлых нефтепродуктов и задвижка, на нагнетательной линии ($l_{\rm H}=800~{\rm m},~d_{\rm H}=100~{\rm mm}$) эквивалентная длина местных сопротивлений оценивается в 5 % от ее реальной длины. Все трубы новые, сварные.

Определить:

- 1) напор, создаваемый насосом, и его полезную мощность;
- 2) тип прибора (манометр или вакуумметр), установленного перед насосом в конце всасывающей линии.

Задача 20

Керосин ($\rho = 780 \text{ кг/м}^3$, $v = 1.5 \cdot 10^{-6} \text{ m}^2$ /с) поступает из резервуара в стояк для налива цистерн (рис. 11). Разность нивелирных отметок уровня жидкости в резервуаре и сечения выхода жидкости из стояка $z_1 - z_2 = 8 \text{ м}$, трубы (l = 300 м, d = 205 мм) стальные сварные умеренно заржавленные.

Определить расход керосина.

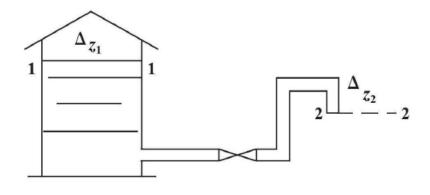


Рис.11

По сифонному сливу (l=50 м, d=100 мм, $\Delta=0.06$ мм) подается топливо ($\rho=840$ кг /м³, $v=5.5\cdot10^{-6}$ м²/с) при разности отметок уровней в резервуарах $H_I=1.38$ м (рис. 12). На сливе имеются фильтр для светлых нефтепродуктов, два колена и вентиль; $H_2=3$ м, $H_3=2$ м, давление насыщенных паров при температуре перекачки $p_n=2$ кПа, $p_a=10^5$ Па.

Определить расход жидкости и проверить условие нормальной работы сифона.

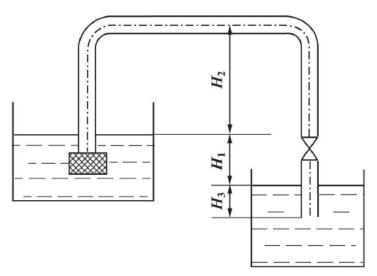


Рис.12

Задача 22

Определить расход воды, вытекающей из открытого бака в атмосферу по трубе переменного сечения под действием постоянного напора H=3 м (рис. 13). Длины участков и их диаметры соответственно: $l_I=5$ м, $d_I=70$ мм; $l_2=10$ м, $d_2=50$ мм. Коэффициенты гидравлического сопротивления: $\lambda_I=0.02$, $\lambda_2=0.025$, коэффициенты местных потерь: выхода из бака в трубу $\xi_{\text{вых}}=0.5$, поворота $\xi_{\Pi}=0.3$, вентиля $\xi_{\text{в}}=3$.

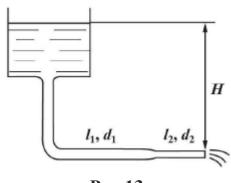


Рис.13

Определить время полного опорожнения целиком заполненного шарового сосуда диаметром D=3 м через отверстие диаметром $d_0=50$ мм с коэффициентом расхода $\alpha=0,62$ (рис. 14). Давление на поверхности жидкости считать атмосферным.

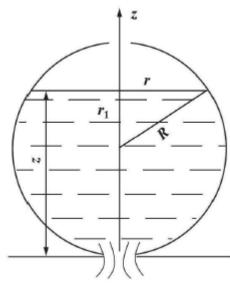


Рис.14

Задача 24

Газ с объемным содержанием метана более 90 % течет по трубопроводу с d=50 см, длиной l=300 км. Движение установившееся и изотермическое при T=300 К, $\Pi=0.012$, R=520 Дж/ (кг·К).

Абсолютное давление в начале трубопровода $p_1 = 5$ МПа, в конце $p_2 = 2,5$ МПа. Найти пропускную способность газопровода, считая газ реальным.

Задача 25

Определить диаметр труб, которые нужно уложить между двумя компрессорными станциями на расстоянии 160 км для перекачки газа с расходом $Q_a = 5$ млн $m^3/$ сут. Абсолютное давление газа на выкиде компрессорной станции, расположенной в начале участка трубопровода,

 $p_I = 5,4$ МПа. Компрессоры работают со степенью сжатия r = 1,5, т.е. давление на приеме следующей компрессорной

станции в конце участка $p_2 = p_1 / r = 3,60 \text{ M}\Pi a.$

Газ считать реальным, движение установившимся и изотермическим при t = 16 °C. Принять R = 520 Дж/ (кг·К), $T_c = 190.6$ K, $p_c = 4.58$ МПа.

В закрытом цилиндрическом отстойнике уровень воды составляет a=0.25 м, уровень нефти b=0.8 м (рис. 15). Плотность воды $\rho_{\rm e}=1000$ кг/м³, плотность нефти $\rho_{\rm H}=880$ кг/м³.

Определить уровни h_1 и h_2 , если абсолютное давление на поверхности нефти $p_0 = 1{,}08\cdot 10^5$ Па, атмосферному давлению соответствует $h_{\delta} = 735$ мм рт.ст.



Рис.15

Задача 27

По трубопроводу перекачивается нефть плотностью $\rho=910$ кг /м 3 в количестве Q=0.04 м 3 /с. Сечение 2-2 расположено выше сечения 1-1 на 10 м. Диаметры трубы $d_1=0.3$ м; $d_2=0.2$ м; давления $p_1=1.5$ МПа, $p_2=1$ МПа.

Определить потерю напора h_{1-2} .

Задача 28

На входе в насос (см. рис. 16), перекачивающий нефть ($\rho=900~{\rm kг/m^3}$) в количестве $Q=100~{\rm m^3/ч}$, допустимый вакуум $p_{1e}=40~{\rm k\Pi a}$. Потери во всасывающей линии $h_n=2~{\rm m}$, диаметр $D=0,1{\rm m}$.

Определить допустимую высоту всасывания z_1 .

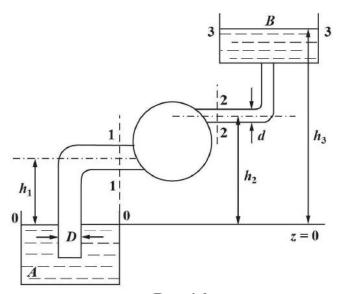


Рис.16